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Analytical expressions are obtained for the temperature distributions in y ray shielding for isotropic and 
unidirectional beams with boundary conditions of the third kind. These are solved numerically for concrete 
shielding, and the effects of  shield thickness, y- ray  scattering, boundary conditions and beam geometry on 
the temperature distribution profile are examined. 

The release of  heat inside shielding depends on the form and energy of  the radiation, the shielding material and 
the attenuation functions, determined by the geometry of  source and shield. For the majority of  sources, the attenuation 
functions are now known in analytical form or have been tabulated in detail [1-3], and the heat release may be calculat-  
ed with sufficient accuracy. 

The heat release W(x) at depth x in a shield is related to the temperature T(x) by the equation of heat conduction, 
which, in the stationary one-dimensional case, has the form: 

d 2 T (x) 
W (x) + k = o. 

dx 2 

The solution of this equation is presented in [4, 5, 6]. 

The temperature distribution in y- ray  shielding is determined below in a different way by solving the heat conduc- 
tion equation for the most general boundary conditions of  the third kind [7]. In this case, at the surface of  the shield a 
relationship is specified between the unknown temperature and its normal derivative, which corresponds to free heat trans- 
fer to the surrounding medium: 

OT/On + h (T . -  Tin) = 0, where h "= ~/k. 

The temperature distribution in the shield is calculated for two cases: plane isotropic and plane unidirectional 
sources. It is considered that an isotropic beam of radiation fails on the shield from large extended sources with small 
self-absorption (surface and gas-filled sources), while the beam from volume sources with high self-absorption and from 
remote point sources is approximately unidirectional. It may be assumed with sufficient accuracy that the radiation from 
real 7 ray sources is intermediate between that from plane isotropic and unidirectional sources. Thus, for identical heat 
fluxes, the temperature in the shield calculated for unidirectional irradiation may be taken as the upper limit, and that 
for an isotropic source as the lower l imit for any real source. 

Plane isotropic source. In the stationary case the heat conduction equation for an infinite plane isotropic source is 
written 

S1Ei (F x) + k d2T/dx ~ = O, 

dT  , S1 
- -  ql) (F X) -}- Cl; 

dx k I~ 

s, { I 
~ x  q ~ ( ~ x ) - - - -  T ( x ) -  2 k ~ 2 .  F x  

(1 )  

e x p ( - -  ~ x) } + CIX "Jr- C2. 

(2) 

In these equations �9 (Fx)  = e x p (  ~x)  - -  ~.xEl(t~x).  

To determine the constants of integration C i and C z, boundary conditions of  the third kind, corresponding to heat 
dT 

transfer from the surface of  the shield to the surrounding medium, may be used. On the left at x = 0 - -  - -hT(O)  = 
dT dx 

= 0 ,  and on the right at x = x o -d-s + h T ( x ~  O. The temperature of  the surrounding medium may be set equal 

to zero without loss of  generality. After substituting the boundary conditions and transforming, we get 

{ [ C1 = $1 1 - -  qb(F :Co) h F x? qb ([~ Xo) - -  
k ~ (2 + hx.) 2~ 

1 e x p ( _ F x 0 ) _  2 h I ]}  S ,  ( h ) ; 
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Co = S~ { I - 0p (I~ Xo) 
" k tx (2h  + h~xo) 

, \ v IO(px0)  _ _ 1  e x p ( _  px0 ) _  2 
pXo 

The temperature at a depth x in the shield Will thenbe  given by 

h ~x  o >( 

2~ 

11/. 

T ( x ) =  ~ x ~ (~ x) - -  ~ e x p  ( - -  tL x) - -  2 - -  + 
~ x  

2 h~x-~- ,~  + - -  
h/p. h ~ x o + 2~ 

h ( .  xo) - -  

1o,,_..0,_. 1)] I ,. = - -  f (~ x). (a) 
Xo t ~ t ~ Xo 2k 

This does not take into account y-ray scattering in the shield. To do so, it is convenient to use the build-up factor 
expressed as a sum of two exponentials [8] 

B (~ x) = A exp (~1 ~ x) + (I + A) exp (as ~ x). 

In this case the heat release in the shield will equal SI[AE1 (t~' x) + (1 - -  A ) X  E1 (~" x)l, where ~ 'x  = ~ x (1 + 51) 
and l~"x --- ~ x (1 + %), and the expression for the temperature at depth x, taking account of 7-ray scattering, assumes 
the form 

T ( x ) =  S ,  [ A / ( ~ ' x ) + ( 1 - - A ) f ( ~ " x ) ] .  
2k 

(4) 

If in dT/dx  - -  h T  (0) = 0 and dT/dx  + h T  (Xo) = 0 we put .h --~ r (a --~ cx~), then the boundary conditions cor- 
responding to heat transfer go over into the boundary conditions corresponding to a controlled temperature at the surfaces 
of the shield. Passing to the limit in (3), we get an expression for the temperature in the case when a temperature T(0) = 
= T(x0) = 0 is maintained at the inner and outer surfaces of the shield: 

T (x) --  $1 { 2k-------~l~x r  ~xl [ 1 - -  exp  ( - -  ~ x)] - -  

- .  qb (~Xo) 1 [1 - -  exp  ( - -~  Xo)]} �9 (5) 
~Xo 

The equation for the temperature distribution in the case of controlled temperatures at the surfaces of the shield 
may also be obtained by direct solution of (2) for the boundary conditions T(0) = const, T(x0) = const. Then, the con- 
stants of integration will be 

Cl~_ r(xo)--r(o) S1 {1 + ~xo[O(~Xo) 1 e x p ( _ D X o ) ] } ,  
x o 2k I~ 2 x o ~ x o 

C2 = T (O) + $1 
2te ~ 

Putting these values in (2) and writing T (0) - -  T (Xo) = A T, we get 

T ( x ) = T o - - A T  x + $1 { Xo 2 - ~ x  q b ( ~ x ) +  1 ~ x  
[1 --  e x p ( - -  ~ x ) l - -  

- -  qb (~ Xo) 1 ~  [1 - - e x p  ( - -  I~ xo)l }.  (6) 
~x0 

For T(0) = T(x0) = 0, (6) is identical with (6). 

Plane unidirectional source. The heat release in a shield at depth x due to y-radiation from an infinite plane uni- 
directional source is S~.exp(-~tx). In this case, S~ ~- N o E  7 C,, where C 2 = i 1 5 . 1 0  -14 joules/Mev. 
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The stationary heat  conduction equation for this source has the form 

S= e x p  ( -- ~ x) + le d2T/dX 2 = O. 
Integrating, we get  

and 

dT/dx = S2/k p, exp ( - -  t~ x) + C1 

T(x) = -- S---2-~ exp ( -- ~ x) + G x  + G. 
k F 2 

The constants of  integrat ion C1 and C 2, determined using boundary conditions of the third kind, 

C~ = S~ ~ t - - e x p ( - - F x 0 )  + h X 
k t~ (2 + x o) I. 

$2 

('§ +-5)  
........ $2 [ 1 - - e x p ( - -  Fx0) + 

C2 = -'k ~ (2h + h~xo) t 

[ �9 ( )]} 4 - h  l + e x p ( _ p . X o ) + F X o  1 +  h . 

are respect ively  

('7) 

Thus, for the temperature  distribution in the shield due to unidirectionaI radiat ion we have 

$3 { ~ x - b ~ / h  [ 1 - - e x p ( - - ~ x o ) . -  t- 
T (x) = kF2 2 + hx o 

+h___(}~ 1+ exp(- -~x0)  § - 

- - e x p ( - - F x ) - - F x ( l +  h )} I~F cP(Fx)" (8) 

= 0  
Setting h -~ oo in (8), we can go over to the solution for boundary conditions of the first kind, when T(0) = T(x0) = 

r(x) -  & 1 1 - ~ x p ( _ ~ , ) _  = i i_r i. ~9~ 
k F  2 t xo j 

If the boundary conditions are in the form T(0) = const . ,  T(x0) = const . ,  then the temperature  at depth x in the 
shield is given by 

T(x) = T ( O ) - - A T  x + s~ • 

x o k F ~ 

x { 1 - exp ( -  ~ x > - ~ - -  I 1 -  exp l -  ~ x011). ~10~ 
& 

It is evident  that  for T(0) = T(x0) = 0 this is the same as (9). 

To take account of the effect of scattered y - rad ia t ion  from a unidirect ional  source on the tempera ture  distribution 
in the shield, the method used above for a plane isotropic source may  be employed.  

Calcula t ion of temperature  distributions in concrete shielding. Concrete has good mechan ica l  and physical  char-  
acterist ics combined with compara t ive ly  low cost and is thus one of  the shielding mater ia l s  most frequently used. How- 
ever, concrete as a shielding mate r i a l  has a serious d e f i c i e n c y -  its low thermal  conductivi ty.  Hence, the dissipation 

of heat  generated within a concrete shield by absorption of  radiat ion energy is a diff icult  problem. 

Owing to unequal heating considerable temperature  stresses may  develop in the concrete  [9], to combat  which it 

is necessary to add reinforcement  or provide expansion joints. 

The need for and degree of  re inforcement  or other means o f  re l ieving the temperature  stresses can only be estab-  

lished from the temperature  curves for the concrete shield. Thus, for a temperature  difference over the thickness of the 
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shield of 40-50 ~ only the normal reinforcement is required, but for a temperature  drop of  90* and above, extra rein-  
forcement must be added. 

The temperature distribution in a concrete shield (see figure) was ca lcula ted  for isottopic and unidirect ional  ) ,-ray 
beams. Curve 1 is ca lcula ted  for an isotropic beam without al lowance for y - r ay  scattering in the concrete and for bound- 

2oo ! 2 3 , zoo  

OT //,~.~..~2 ~, ~x 0 2 0 6 8 ~X 

400 " ~  I 

300--i 2 3 z~ 5 B _ ~ c , 

/00 ""-- 

o 2 ~ s 8 /o /z m ~x 

Temperature  distribution inside concrete shield (gravel con- 

crete) of thickness 5 (a), 10 (b), and 15 (c) y-quanta  mean 
free paths for qe = 0.42 �9 10 a watt.  m-2 and y - r ay  energy E = 
= 1.25 MeV (Co6~ k = 1.45 watt. m -1 per unit temperature  

gradient,  T m = 0~ cx = 11.7 watt.  m -2 per unit temperature  
gradient [II], # = 0. 126 cm -I [8]. 

axy conditions of the first kind (5); curve 2 differs from curve i in that the calculation includes multiple }'-ray scatter- 

ing in the concrete using values for the coefficients A, c~ I, and c~ 2 from [8]; curve 8 is calculated for an isotropic beam 

without a11owance for y-ray scattering and for boundary conditions of the third kind; curve 4 is for the same case, but 

includes the effect of y ray scattering; curve 5 is for unidirect ional  radiat ion without al lowance for scattering in the 
shield and for boundary conditions of  the first kind (9); curve 6 gives the temperature distribution due to an unscattered 

unidirectional  beam under conditions of free heat  transfer between the shield and the surrounding medium (8). 

The shape of all  the temperature  distribution curves is approximately  the same; they are asymmetr ic  with respect 
to the center of  the shield and have a more or less d e a r l y  defined maximum of variable height and pe:i t ion.  It may  be 
noted that  the temperature curves shown in [5, 6] have the same shape. However, the locat ion of the temperature m a x -  
imum, established on the basis of approximate calculat ions in [5, 6] (x ~ 30 cm from inner surface of the shield) in no 
case agrees wi th  the locations given by exact  equations of the form dT/dx  = 0. In fact, the temperature maximum is 
located no more than 10-15 cm from the surface of the concrete.  

Let us now consider the effect  of the individual  factors on the temperature distribution curves for concrete shield-  
ing. 

Effect of boundary conditions. Boundary conditions have a substantial effect on the temperature distribution inside 

the shield. Comparing curves 1 and 3, 2 and 4, and 5 and 6, we note that  for free heat  transfer at the shield surface, 

the max imum is located 9onsiderably closer to the surface (about 30-50%) than under constant temperature  conditions. 
In addition, at the same temperature  of the external medium,  the height of the temperature  max imum for free heat  
transfer is more than three t imes greater than the max imum for constant surface temperature  for an isotmpic beam, and 
2-2. 5 t imes greater for a unidirect ional  beam.  

Effect o.f )~-ray scattering in shield, y-Ray scattering in the concrete shield leads in all  cases to an increase in 
temperature  over that due to an unscattered beam.  The difference between the curves for the case of free heat  transfer 
increases with shield thickness. When al lowance is m a d e  for scattering, the temperature  maximum is displaced 50-100% 
into the shield and its height, for an isotropic beam, is increased 2 .5 -3  t imes. The temperature  distribution due to a 
unidirect ional  beam with al lowance for y - r a y  scattering has not been ca lcula ted  for l ack  of  an analy t ica l  dependence of 
bui ld-up factor on shield thickness for this geometry.  It may,  however, be shown that since in absolute terms the bui ld-  
up factor for a plane unidirect ional  source is always less than that for a plane isotropic source, the temperature  differ-  
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ence between these sources with a l lowance for scattering must be less than the difference between u~e conesponding 
distributions without such al lowance (curves 1-5 and a-S). 

Effect of  geometry of y - r ay  beam.  It may be seen from the figure that  for the same heat  ttux at the  surface the 

temperature  inside the shield and the depth at which the temperature  max imum occurs are greater  for unidirect ional  
than for isotropic irradiation.  This is obviously related to the greater  penetrat ing power of  the unidirect ional  beam.  It 
should also be noted that the effect  of  beam geometry on the temperature curve is considerably weaker than the effects 
of  the boundary conditions at the surface of  the shield and y ray scattering. This fact may  be used in rough est imates 
of  shield heat ing without account for the actual  source geometry,  using, for example ,  the equations and curves for uni-  
direct ional  irradiat ion.  

Effect of  shield thickness. The conditions for dissipation of heat  from the inner part of  the shield deter iorate  with 
increase in thickness; thus, al l  the curves are displaced in the direct ion of  increased temperature .  At the same t ime,  
the temperature  max imum is displaced into the shield by a distance gx ~ 1-1 .5 .  

The results obtained permit  the evaluat ion of approximate prac t ica l  recommendat ions  on safe conditions of i r ra-  
diation for concrete.  For example ,  in [12] Lane gives a l imi t ing  (in the sense of  temperature  l imi ta t ions)  value  for t~he 

energy flux to which concrete may  be exposed. This is 2 �9 10 l l  MeV �9 cm -z �9 sec-1, which corresponds to 3 �9 102 watt x 
x m - 2  tt is also shown that  in this case the concrete temperature  rises by 28"C. Obviously, for 0 .4  �9 104 watt �9 m -z the 
temperature  rise should be ~360~ 

For comparison, suppose the temperature  distribution due to an isotropic beam with al lowance for y - r a y  scattering 
and free heat  transfer at the shield edges is used (curve 4). Apparently, this is one of  the typical  cases often met  with in 
pract ice.  The max imum temperature  on curves 4 is ~880~ for ~x0 = 5, 440 ~ for gx0 = 10, and 478 ~ for gx0= 18. These 
values agree to within an order of magni tude with Lane's es t imate  [12], but the difference is, nevertheless, substantial,  
especia l ly  for a thick shield. However, Lane did not specify the shield thickness or the conditions of heat  removal  to 
which his l imi t  of 2 �9 10 ~t MeV �9 c m - ~ .  sec-1 corresponds, or how this value may change depending on shield thickness 
and other conditions. 

The equations and temperature curves for concrete presented in this paper may  be useful in es t imat ing the possi- 
b le  heating of protect ive shielding built  around powerfui y - r a y  sources. Since the dependence between the temperature  
inside the shielding T(x) and the hea t  flux at the surface q is l inear  (assuming that  radiat ion losses are negl igible) ,  T(x) 

may  be determined for a given q from the relat ion ,T (x) = To (x)q/qo, where T0(x ) is the temperature  at depth x in the 
concrete for a hea t  flux q0 = 0.42 �9 104 w a t t .  m-Z, a v a l u e  de te rmined  from the graphs in the figure. 

NOTATION 

c~ and k - heat  transfer coeff ic ient  and thermal  conductivity;  S1El(gx ) - heat  release at  depth x in shield; El(gx) - 
integral  exponential  function; ti - at tenuation factor for y=radiation; S~ - specific heat  release m shield due to unat ten-  
uated y r a y  beam for a plane isotropic source; u - density of  surface act ivi ty;  n - yield of z -quan ta  per decay; E - en- 

ergy o f  y-quanta;  7 - coeff ic ient  of energy absorption in shield mater ia l ;  No - number of  y -quan ta  normal ly  incident  on 

unit area of shietd surface; q0 - hea t  flux to inner surface of  shield. 

REFERENCEs 

1. N. G. Gusev, E. E. Kovalev, D. P. Osanov, and V. I. Popov, Shielding from Extended Sources [in Russian], 
Gosatomizdat ,  1961. 

2. G. V .  Gorshkov, Gamma Radiation of Radioactive Bodies and Elements; Design of  Radiation Shielding [in Rus- 
sian], Izd-vo AN SSSR, 1989. 

3. Nuclear Reactor Shielding; USAEC Mater ial  [Russian translation], IL, 1989. 
4. R. Stephenson, Introduction to Nuclear Engineering [Russian translation], C-ostekhizdat, 1956. 

8. D. B. Hall iday,  Heat Release in Concrete Reactor Shields, Harwell, 1986. 
6. B. T. Price, C. C. Horton, and K. T. Spinnery, Radiation Shielding [Russian translation], IL, 1959. 
7. N. S. Koshlyakov, E. B. Gliner, and M. M. Smirnov, Basic DifferentiaI Equations of  Mathemat ica l  Physics 

[in Russian], F izmatgiz ,  t962. 
8. H. Golds te in ,  Fundamental  Aspects of Reactor Shielding [Russian translation],  Gosatomizdat ,  1961. 
9. I. I. Gol 'denblat t  and N. A. Nikolaenko, Calcula t ion  of Temperature  Stresses in Nuciear Reactors [in Russian], 

Gosatomizdat,  1962. 
10. A. N. KomarovskiL Construction of Nuclear Reactors [in Russian], Gosatomizdat ,  1989; A. N. Komamvskii ,  

Structural Materials  for Biological Shielding of  Nuclear Reactors and Accelerators  [in Russian], Cosatomizdat ,  1958. 
t l .  Building Standards and Specif icat ions [in Russian], part II, Cos. izd-vo l i teratury po s tmitel 'noi  arkhitekture i 

s t ro i ternym mate r ia lam,  1958. 
12. L A. Lane, Nucleonics, 13, no. 6, 56, 1955. 

20 April t964 Biophysical Institute, Moscow 

567 


